Acoustic emission (AE) test is a powerful technique for examining the sounds of cracks growing, breaking, and other modes of damage in cementitious materials deforming under stress, such as rock-cemented tailings matrix composites (RCTMC). RCTMC, an engineered mixture of tailings, cement, rock, and water, is widely used to fulfill numerous important roles at underground mine sites as a construction material and a ground support tool. To study the mechanical strength and AE properties of RCTMC, compression testing was carried out using a triaxial compression test system (TAW-2000) and AE monitoring system (PCI-2), and the failure modes of samples were also examined. Results have shown that (1) the failure process of RCTMC samples can be divided into six main stages: compaction, linear elastic characteristic, crack growth, primary damage development, cemented tailings backfill withstand stress zone, and secondary damage development stage. CTB has the strengthening effect on mechanical strength of rock; (2) the AE process can be also divided into six main stages: the prepeak quiescence period, the elastic energy reserve period, the first destruction development AE area, the secondary energy reserve period, the second damage development stage, and the postpeak calm period; and (3) samples' cumulative ring count is "stepped" distribution over time, and the ring count has entered the postpeak flat stage after many active periods. e process of RCTMC samples from tensile to shear failure mode is represented by numerical simulation. Finally, the obtained experimental results can offer a useful reference for the further study of the mechanism of the surrounding rock and cemented tailings backfill structure.