This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ABSTRACTAn efficient computational approach based on a generalized unconstrained approach in conjunction with isogeometric analysis (IGA) are proposed for dynamic control of smart piezoelectric composite plates. In composite plates, the mechanical displacement field is approximated according to the proposal model using isogeometric elements and the nonlinear transient formulation for plates is formed in the total Lagrange approach based on the von Kármán strains and solved by Newmark time integration. Through the thickness of each piezoelectric layer, the electric potential is assumed linearly.For active control of the piezoelectric composite plates, a close-loop system is used. An optimization procedure using genetic algorithm (GA) is considered to search optimal design for actuator input voltages. Various numerical examples are investigated to show high accuracy and reliability of the proposed method.