When Morris and Thorne first proposed the possible existence of traversable wormholes, they adopted the following strategy: maintain complete control over the geometry, thereby leaving open the determination of the stress-energy tensor. In this paper we determine this tensor by starting with a noncommutative-geometry background and assuming that the static and spherically symmetric spacetime admits conformal motions. This had been established in a previous collaboration with Rahaman et al., using a slightly different approach. Accordingly, the main purpose of this paper is to show that the wormhole obtained can be made stable to linearized radial perturbations.