The goal was to compare static magnetic field (SMF, generated by Nd 2-Fe 14-B magnets) vasodilator capacity with verapamil (VER, a potent, clinically verified Ca 2+ channel-blocking agent), aimed to assess SMF implementation in conditions with vascular ischemia. Skin microcirculatory blood flow measured by microphotoelectric plethysmogram was recorded in conscious rabbits after 40 min of 0.25 T SMF regional exposure to ear microvascular net (SMF-Vas, n = 20), or 0.35 T to carotid baroreceptors (SMF-Car, n = 14), and compared with that after 30 min VER intravenous infusion (20 µg/kg/min, n = 20). The principal finding is that SMF-Vas, SMF-Car, and VER significantly increased microcirculatory blood flow by 17.9 ± 9.58%, 22.6 ± 11.11%, and 30.5 ± 14.06% (mean ± SEM) respectively, and there was no significant difference between all three treatments (P = 0.986). Microvascular dilation was accompanied by significant decrease of blood pressure in VER and SMF-Car cases. The decrease of arterial baroreflex sensitivity in VER contrasted with its increase in SMF-Car, coupled with improved vessel sensitivity to nitric oxide (NO) dilatory effect. This suggests that SMF can have a strong vasodilator property tailored to address diabetic, mainly NO-deficient, neural, and myogenic microvascular dysfunction, especially employing both SMFs' vasodilation synergy.