This paper will present an overview of indoor and outdoor drone localization methods. Outdoor scenarios almost always use a GPS with IMU. Indoor systems are using short-range sensors that are sensitive to the external conditions of the environment. Mostly used methods are optical flow and stereovision, while an ultrasonic transceiver system optimizes and provides high precision and orientation of the drone. An ultrasonic preceptor is integrated into a listener/beacon and can be used with referenced beacons inside a WSN. The Crossbow Cricket hardware platform, which is based on TDOA and RSS principle, is used for simulations and code development. The researched direction is the localization of referent nodes (beacons) concerning the listener which is mounted on a flying drone. For that purpose, a probabilistic approach is used, based on a Bayes filter, where the positions of the beacon can be observed like random variables. Considering that these distributions significantly vary from a Gauss distribution, it is appropriate to use a particle filter.