Caries and gingivitis are the most prevalent oral infectious diseases of humans and are due to the accumulation of dental plaque (a microbial biofilm) on the tooth surface and at the gingival margin, respectively. Several in vitro and in vivo studies have shown that many natural components of foods and beverages inhibit the adhesion of and/or exert activity against oral bacteria. These biological activities have mainly been attributed to the polyphenol fraction. In order to explore the possibility that diet can alter the dental plaque community, in this study we evaluated the composition of the microbiota of supra-and subgingival plaque samples collected from 75 adult subjects with different drinking habits (drinkers of coffee, red wine, or water for at least 2 years) by analyzing the microbial population through the separation of PCR-amplified fragments using the denaturing gradient gel electrophoresis (DGGE) technique. The mean numbers of bands of the DGGE profiles from all three categories were evaluated. There were no significant differences between the two kinds of plaque collected from the control group (water drinkers), and this group showed the highest number of bands (supragingival plaque, 18.98 ؎ 3.16 bands; subgingival plaque, 18.7 ؎ 3.23 bands). The coffee and wine drinker groups generated the lowest numbers of bands for both supragingival plaque (coffee drinkers, 8.25 ؎ 3.53 bands; wine drinkers, 7.93 ؎ 2.55 bands) and subgingival plaque (coffee drinkers, 8.3 ؎ 3.03 bands; wine drinkers, 7.65 ؎ 1.68 bands). The differences between coffee drinkers or wine drinkers and the control group (water drinkers) were statistically significant. A total of 34 microorganisms were identified, and the frequency of their distribution in the three subject categories was analyzed. A greater percentage of subjects were positive for facultative aerobes when supragingival plaque was analyzed, while anaerobes were more frequent in subgingival plaque samples. It is noteworthy that the frequency of identification of anaerobes was significantly reduced when the frequencies for coffee and wine drinkers were compared with the frequencies for subjects in the control group. The DGGE profiles of the organisms in both plaque samples from all groups were generated and were used to construct dendrograms. A number of distinct clusters of organisms from water, coffee, and wine drinkers were formed. The clustering of some of the DGGE results into cohort-specific clusters implies similarities in the microbiotas within these groups and relevant differences in the microbiotas between cohorts. This supports the notion that the drinking habits of the subjects may influence the microbiota at both the supragingival and the subgingival levels.