Microbial fuel cell (MFC) technology turns chemical energy into bioelectricity in a clean and efficient manner, lowering carbon emissions and increasing bioenergy production. It is a multifaceted technique that has the potential to be a panacea for clean water scarcity and sustainable, renewable energy. In this review, the approach focuses on scaling-up and application prospects at a commercial scale. An outlook on various, previously tried methodologies was generated in order to establish a viable bioelectricity scaling-up approach that is also cost-effective in its design. Precise themes were followed to evaluate previously produced models and methodologies for MFCs: principle and anatomical mechanisms, basic applications, bioelectricity scaling-up potentials from previous work and limitations, then an outlook on MFC feasibility and its wastewater treatment plant (WWTP) energy supply chain. The goal of this paper is to derive a viable approach from prior research in order to comprehend how MFC technology may be scaled-up for commercial and practical power output. Essentially, this article summarizes the current energy predicaments faced by South Africa and proposes MFCs as a new knowledge-contributing technology with electricity scaling-up potential. Conclusively, more research on MFC technique scaling-up operating factors is recommended.