Phase-averaged and directionally triggered digital particle image velocimetry measurements were taken in longitudinal and transverse planes in the near field of the flow emerging from a fluidic precessing jet nozzle. Measurements were performed at nozzle inlet Reynolds and Strouhal numbers of 59 000 and 0.0017, respectively. Results indicate that the jet emerging from the nozzle departs with an azimuthal component in a direction opposite to that of the jet precession. In addition, the structure of the 'flow convergence' region, reported in an earlier study, is better resolved here. At least three unique vortex-pair regions containing smaller vortical 'blobs' are identified for the first time. These include a vortex-pair region originating from the foci on the downstream face of the nozzle centrebody, a vortex-pair region shed from the edge of the centrebody and a vortex-pair region originating from the downstream surface of the nozzle exit lip.