2023
DOI: 10.1177/17483026231198181
|View full text |Cite
|
Sign up to set email alerts
|

Statistical analysis of various splitting criteria for decision trees

Fadwa Aaboub,
Hasna Chamlal,
Tayeb Ouaderhman

Abstract: Decision trees are frequently used to overcome classification problems in the fields of data mining and machine learning, owing to their many perks, including their clear and simple architecture, excellent quality, and resilience. Various decision tree algorithms are developed using a variety of attribute selection criteria, following the top-down partitioning strategy. However, their effectiveness is influenced by the choice of the splitting method. Therefore, in this work, six decision tree algorithms that a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance