Polypropylene and polylactide-based composite fibers have been produced by a melt technology. Long vapor-grown carbon fibers (CNFs) have been used as electrical conductivity fillers. It is clearly shown by experimental methods that the CNFs are evenly distributed in the polymer matrix, orienting themselves along the direction of fiber extrusion and retaining their initial dimensions. It is shown that for composites fibers based on crystallizing (polypropylene) and amorphous (polylactide acid) polymer matrix, the dependence of electrical resistance on the filler concentration is percolation character and can be described as a double Boltzmann function. Four sections are identified on the dependences of the electrical resistance on the filler concentration for composite fibers, and the reasons for this character of this dependence on the formation of electrically conductive circuits are analyzed. Investigated in this work are the PP-based and PLA-based composites filled with carbon nanofibers that can be used as antistatic, shielding materials, or as sensors.