Throughout the world, large trees are increasingly rare. Cariniana legalis is the tallest tree species of the Brazilian Atlantic Forest, reaching up to 60 m in height. Due to extensive deforestation of the Atlantic Forest, remnant C. legalis populations are small and spatially isolated, requiring the development of strategies for their conservation. For in situ and ex situ genetic conservation to be effective, it is important to understand the levels and patterns of spatial genetic structure (SGS), and gene flow. We investigated SGS and pollen flow in three small, physically isolated C. legalis stands using microsatellite loci. We measured, mapped, and sampled all C. legalis trees in the three stands: 65 trees from Ibicatu population, 22 trees from MGI, and 4 trees from MGII. We also collected and genotyped 600 seeds from Ibicatu, 250 seeds from MGI, and 200 seeds from MGII. Significant SGS was detected in Ibicatu up to 150 m, but substantial levels of external pollen flow were also detected in Ibicatu (8%), although not in MGI (0.4%) or MGII (0%). Selfing was highest in MGII (18%), the smallest group of trees, compared to MGI (6.4%) and Ibicatu (6%). In MGI and MGII, there was a strong pattern of mating among near‐neighbors. Seed collection strategies for breeding, in situ and ex situ conservation and ecological restoration, must ensure collection from seed trees located at distances greater than 350 m and from several forest fragments.