“…Various disease progression and sub-type approaches have been proposed and developed. These include survival and multi-state models for investigating transitions between disease states ( Hubbard and Zhou, 2011 ; Vos et al, 2013 ; van den Hout, 2016 ; Wei and Kryscio, 2016 ; Robitaille et al, 2018 ; Zhang et al, 2019 ); mixed effects models (linear, generalized, non-linear) that incorporate subject-specific random effects and can be extended to handle latent time shifts, random change points, latent factors, processes and classes, hidden states, and multiple outcomes ( Hall et al, 2000 ; Jedynak et al, 2012 ; Liu et al, 2013 ; Proust-Lima et al, 2013 ; Donohue et al, 2014 ; Samtani et al, 2014 ; Lai et al, 2016 ; Zhang et al, 2016 ; Geifman et al, 2018 ; Li et al, 2018 ; Wang et al, 2018 ; Lorenzi et al, 2019 ; Proust-Lima et al, 2019 ; Villeneuve et al, 2019 ; Younes et al, 2019 ; Bachman et al, 2020 ; Kulason et al, 2020 ; Raket, 2020 ; Segalas et al, 2020 ; Williams et al, 2020 ) and can be combined with models for event-history data ( Marioni et al, 2014 ; Blanche et al, 2015 ; Proust-Lima et al, 2016 ; Rouanet et al, 2016 ; Li et al, 2017 ; Iddi et al, 2019 ; Li and Luo, 2019 ; Wu et al, 2020 ); event-based models which attempt to model the pathological cascade of events occurring as the disease develops and progresses through disease stages ( Fonteijn et al, 2012 ; Young et al, 2014 ; Chen et al, 2016 ; Goyal et al, 2018 ; Oxtoby et al, 2018 ); and various clustering approaches for discovering risk stratification/disease progression groups and endotypes. For example, those based on hierarchical, partitioning and model-based clustering algorithms/methods ( Dong et al, 2016 ; Racine et al, 2016 ; Dong et al, 2017 ; ten Kate et al, 2018 ; Young et al, 2018 ).…”