2014
DOI: 10.1002/joc.4206
|View full text |Cite
|
Sign up to set email alerts
|

Statistical downscaling of monthly reservoir inflows for Kemer watershed in Turkey: use of machine learning methods, multiple GCMs and emission scenarios

Abstract: ABSTRACT:In this study, statistical downscaling of general circulation model (GCM) simulations to monthly inflows of Kemer Dam in Turkey under A1B, A2, and B1 emission scenarios has been performed using machine learning methods, multi-model ensemble and bias correction approaches. Principal component analysis (PCA) has been used to reduce the dimension of potential predictors of National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. Then, the rea… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
28
0
3

Year Published

2016
2016
2024
2024

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 51 publications
(31 citation statements)
references
References 101 publications
0
28
0
3
Order By: Relevance
“…As is well‐known, in downscaling works the possible effects of climatic change on variables operating within the hydrological cycle are all related within the uncertainty/reliability frame. It was uttered that uncertainties are related to GCMs, used scenarios, data features, and the used downscaling techniques (Mujumdar and Ghosh, ; Okkan and Inan, ). In spite of the aforementioned uncertainties, statistical downscaling techniques will remain the most frequently used tools for researchers to examine the effects of climate change on hydrological processes owing to their computational practicality compared to dynamic downscaling (Anandhi et al , ).…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…As is well‐known, in downscaling works the possible effects of climatic change on variables operating within the hydrological cycle are all related within the uncertainty/reliability frame. It was uttered that uncertainties are related to GCMs, used scenarios, data features, and the used downscaling techniques (Mujumdar and Ghosh, ; Okkan and Inan, ). In spite of the aforementioned uncertainties, statistical downscaling techniques will remain the most frequently used tools for researchers to examine the effects of climate change on hydrological processes owing to their computational practicality compared to dynamic downscaling (Anandhi et al , ).…”
Section: Discussionmentioning
confidence: 99%
“…Projected changes of hydrometeorological variables for different basins in Turkey under SRES of AR4 have been obtained from the simulation of GCMs in version three of the Coupled Model Inter‐comparison Project, CMIP3 (e.g. Okkan and Fistikoglu, ; Okkan and Inan, , ) However, in the present work, projections derived from statistical downscaling techniques are introduced based on CMIP5 data in the hope of providing a reference for investigating the probable climatic change impacts on the precipitation regime in the Basin under different RCPs.…”
Section: Introductionmentioning
confidence: 99%
“…, N is the kernel function and b * is the bias term. Any kernel function can be preferred in accordance with Mercer's theorem [31][32][33].…”
Section: Least Squares Support Vector Machinesmentioning
confidence: 99%
“…Çözünürlük bakımından nispeten kaba olan genel dolaşım modelleri (GCM'ler) iklim değişikliğinin yerel ölçekteki hidro-meteorolojik etkilerini değerlendirmede yeterli değildir. Bu nedenle, istasyon ölçeğinde kaba çözünürlüklü atmosferik modellerin etkisini yorumlamak için yüksek çözünürlüklü sonuçlara ihtiyaç duyulmaktadır[21,22,23]. Bu ihtiyaçtan dolayı kaba çözünürlüklü GCM verilerinin ölçek indirgeme yöntemi kullanılarak yerel ölçeğe indirgenmesiyle çalışma alanın iklimsel özelliklerini daha güvenilir bir şekilde temsil eden veri setine ulaşmak mümkündür.…”
unclassified
“…İstatistiksel ölçek indirgeme uygulamalarında YSA ve EKDVM modellerinin performanslarını değerlendirmede kullanılan indisler Moriasi vd [24]. çalışmasında detaylı bir şekilde verilmiştir.Literatürde tekil iklim modellerinin yarattığı belirsizliklerden, ayrıca çoklu iklim modellerinin uygulamalarında hangi modelin bir diğerine göre üstün olduğunun belirsizliği vurgulanmıştır[4,21].Bu bağlamda Knutti vd [25]. tarafından hazırlanan çalışmada, IPCC'in 4.…”
unclassified