In this paper, we present a review of Shannon and differential entropy rate estimation techniques. Entropy rate, which measures the average information gain from a stochastic process, is a measure of uncertainty and complexity of a stochastic process. We discuss the estimation of entropy rate from empirical data, and review both parametric and non-parametric techniques. We look at many different assumptions on properties of the processes for parametric processes, in particular focussing on Markov and Gaussian assumptions. Non-parametric estimation relies on limit theorems which involve the entropy rate from observations, and to discuss these, we introduce some theory and the practical implementations of estimators of this type.