<abstract><p>Progressive first-failure censoring has been widely-used in practice when the experimenter desires to remove some groups of test units before the first-failure is observed in all groups. Practically, some test groups may haphazardly quit the experiment at each progressive stage, which cannot be determined in advance. As a result, in this article, we propose a progressively first-failure censored sampling with random removals, which allows the removal of the surviving group(s) during the execution of the life test with uncertain probability, called the beta-binomial probability law. Generalized extreme value lifetime model has been widely-used to analyze a variety of extreme value data, including flood flows, wind speeds, radioactive emissions, and others. So, when the sample observations are gathered using the suggested censoring plan, the Bayes and maximum likelihood approaches are used to estimate the generalized extreme value distribution parameters. Furthermore, Bayes estimates are produced under balanced symmetric and asymmetric loss functions. A hybrid Gibbs within the Metropolis-Hastings method is suggested to gather samples from the joint posterior distribution. The highest posterior density intervals are also provided. To further understand how the suggested inferential approaches actually work in the long run, extensive Monte Carlo simulation experiments are carried out. Two applications of real-world datasets from clinical trials are examined to show the applicability and feasibility of the suggested methodology. The numerical results showed that the proposed sampling mechanism is more flexible to operate a classical (or Bayesian) inferential approach to estimate any lifetime parameter.</p></abstract>