Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In some settings, systems may not fail completely but instead undergo performance degradation, leading to reduced efficiency. A significant concern arises when a system transitions into a degraded state without immediate detection, with the degradation only becoming apparent after an unpredictable period. Undetected degradation can result in failures with significant consequences. For instance, a minor crack in an oil pipeline might go unnoticed, eventually leading to a major leak, environmental harm, and costly cleanup efforts. Similarly, in the nuclear industry, undetected degradation in reactor cooling systems could cause overheating and potentially catastrophic failure. This paper focuses on reliability modeling for systems experiencing degradation, accounting for time delays associated with undetected degraded states, self-repair mechanisms, and varying operating environments. The paper presents a reliability model for degraded, time-dependent systems, incorporating various aspects of degradation. It first discusses the model assumptions and formulation, followed by numerical results obtained from system modeling using the developed program. Various scenarios are illustrated, incorporating time delays and different parameter values. Through computational analysis of these complex systems, we observe that the probability of the system being in the undetected degraded state tends to stabilize shortly after the initial degradation begins. The model is valuable for predicting and establishing an upper bound on the probability of the undetected, degraded state and the system’s overall reliability. Finally, the paper outlines potential avenues for future research.
In some settings, systems may not fail completely but instead undergo performance degradation, leading to reduced efficiency. A significant concern arises when a system transitions into a degraded state without immediate detection, with the degradation only becoming apparent after an unpredictable period. Undetected degradation can result in failures with significant consequences. For instance, a minor crack in an oil pipeline might go unnoticed, eventually leading to a major leak, environmental harm, and costly cleanup efforts. Similarly, in the nuclear industry, undetected degradation in reactor cooling systems could cause overheating and potentially catastrophic failure. This paper focuses on reliability modeling for systems experiencing degradation, accounting for time delays associated with undetected degraded states, self-repair mechanisms, and varying operating environments. The paper presents a reliability model for degraded, time-dependent systems, incorporating various aspects of degradation. It first discusses the model assumptions and formulation, followed by numerical results obtained from system modeling using the developed program. Various scenarios are illustrated, incorporating time delays and different parameter values. Through computational analysis of these complex systems, we observe that the probability of the system being in the undetected degraded state tends to stabilize shortly after the initial degradation begins. The model is valuable for predicting and establishing an upper bound on the probability of the undetected, degraded state and the system’s overall reliability. Finally, the paper outlines potential avenues for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.