2002
DOI: 10.1103/physreve.66.066704
|View full text |Cite
|
Sign up to set email alerts
|

Statistical mechanics of the Bayesian image restoration under spatially correlated noise

Abstract: We investigated the use of the Bayesian inference to restore noise-degraded images under conditions of spatially correlated noise. The generative statistical models used for the original image and the noise were assumed to obey multidimensional Gaussian distributions, whose covariance matrices are translational invariant. We derived an exact description to be used as the expectation for the restored image by the Fourier transformation and restored an image distorted by spatially correlated noise by using a spa… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0

Year Published

2003
2003
2017
2017

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 9 publications
(8 citation statements)
references
References 9 publications
0
8
0
Order By: Relevance
“…(10), (11) and (12) in the posterior density (9), we derive the Fourier transformed forms of the posterior density (Tsuzurugi and Okada 2002). By inserting Eq.…”
Section: Appendixmentioning
confidence: 99%
See 3 more Smart Citations
“…(10), (11) and (12) in the posterior density (9), we derive the Fourier transformed forms of the posterior density (Tsuzurugi and Okada 2002). By inserting Eq.…”
Section: Appendixmentioning
confidence: 99%
“…In the next subsection, we will give a detailed explanation of Z ps . In the algorithm for estimating the PRC by maximizing the posterior density, the Fourier series of Z (t), G(t), and φ(t 0 ) are used as follows to derive an executable algorithm to maximize the posterior density (Tsuzurugi and Okada 2002).…”
Section: Map Estimation Algorithmmentioning
confidence: 99%
See 2 more Smart Citations
“…The matrix C 0 in Eq. (15) was therefore taken to be the average of the covariance matrices in the insert and in the background of the simulated reconstructed images. To study the influence of the covariance matrix and the NPS on the result, three simulated images were used: the simulation with two energy bins and a pure ramp filter in the reconstruction, and the simulation with eight energy bins, both with a pure ramp filter and with a Hann filter.…”
Section: B Denoisingmentioning
confidence: 99%