Background: Apart from biomechanical alterations in movement patterns, it is known that movement limitations in persons with knee osteoarthritis (PwKOA) are related to an individual's perception and belief regarding pain and disability. To gain more insights into the functional movement behaviour of PwKOA in a clinical setting, inertial sensor technology can be applied. This study first aims to evaluate the ability of inertial sensors to discriminate between healthy controls (HC) and PwKOA. Secondly, this study aims to determine the relationship between movement behaviour, pain-related factors and disability scores. Methods: Twelve HC and 19 PwKOA were included. Five repetitions of six functional movement tasks (walking, forward lunge, sideward lunge, ascent and descent stairs, single leg squat and sit-to-stand) were simultaneously recorded by the inertial sensor system and a camera-based motion analysis system. Statistically significant differences in angular waveforms of the trunk, pelvis and lower limb joints between HC and PwKOA were determined using one-dimensional statistical parametric mapping (SPM1D). The Knee injury and Osteoarthritis Outcome Score and TAMPA scale for Kinesiophobia were used to evaluate the relationship between discriminating joint motion, pain-related factors and disability using spearman's correlation coefficients. Results: PwKOA had significantly less trunk rotation, internal pelvis rotation and knee flexion ROM during walking. Additionally, the reduced knee flexion (i.e. at the end of the stance phase and swing phase) was related to increased level of perceived pain. During the sideward lunge, PwKOA had significantly less knee flexion, ankle plantarflexion and hip abduction. This decreased hip abduction (i.e. during stance) was related to higher fear of movement. Finally, PwKOA had significantly less knee flexion during the forward lunge, single leg squat and during ascent and descent stairs. No significant correlations were observed with disability.