This paper presents the results of an experimental investigation carried out to optimize the weight of a glass manufacturing bottle of a product called CC35 by Taguchi method of parameter design. The experiments have been designed using an L16 orthogonal array with thirteen factors and two levels each. So the effects of each control factor level on the performance characteristic are analyzed using signal-to-noise ratios, mean response data and analysis of variance (ANOVA). Hence, an experimental setting is established; and to measure the performance of the Taguchi method on the manufacturing process before and after the experiment, three tools are used. The Xbar and range charts measure the stability of the process, the capability index estimates the process ability to deliver a good product in regard to the target value and customer specifications. The quality loss function (QLF) was used to determine the reduction in quality cost due to the elimination of deviation of the quality characteristic (weight) from the target value. Experiment shows that the Taguchi method applied on the glass bottle's manufacturing process (CC35) ensures best stability and capability of the manufacturing process and reduces the weight which results in the quality cost down to 92%.