In this paper, in the scope of a non-extensive statistical model for the nucleon’s structure function, the volume of the gluons in the nucleons and the relations among the temperature, T, the parameter “q” of Tsallis statistics, and the scattering energies, Q2, are studied. A system of equations with the usual sum rules are solved for the valence quarks, the experimental results for the polarized structure function, and the estimated carried moments for gluons and quarks. Each state of T and q leads to a set of chemical potentials and different radii for gluons and quarks. We conclude that gluons must occupy a larger volume than the quarks to fit the fraction of the total momentum. A linear function of the temperature with Q2 is obtained as an approach. The obtained range of temperatures is different from the previous models.