2016
DOI: 10.1007/978-3-319-40566-7_5
|View full text |Cite
|
Sign up to set email alerts
|

Statistical Relational Learning with Soft Quantifiers

Abstract: Abstract. Quantification in statistical relational learning (SRL) is either existential or universal, however humans might be more inclined to express knowledge using soft quantifiers, such as "most" and "a few". In this paper, we define the syntax and semantics of PSL Q , a new SRL framework that supports reasoning with soft quantifiers, and present its most probable explanation (MPE) inference algorithm. To the best of our knowledge, PSL Q is the first SRL framework that combines soft quantifiers with first-… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2016
2016
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 22 publications
0
0
0
1
Order By: Relevance
“…[49,50] 不再一一赘述了. 总之, 统计关系学 习方法除了 Farnadi 等 [51,52] 提出了在一阶逻辑中引入软性约束之外没有太大的新进展, 在知识图谱 补全中的应用也多作为一种关联程度评价方法结合到预测过程中 [53∼62] .…”
Section: 基于统计关系学习的类型推理方法unclassified
“…[49,50] 不再一一赘述了. 总之, 统计关系学 习方法除了 Farnadi 等 [51,52] 提出了在一阶逻辑中引入软性约束之外没有太大的新进展, 在知识图谱 补全中的应用也多作为一种关联程度评价方法结合到预测过程中 [53∼62] .…”
Section: 基于统计关系学习的类型推理方法unclassified