Straw fibers are renowned for their cost-effectiveness, sustainability, and durability. They represent a promising natural reinforcement option for reactive powder concrete (RPC). This paper investigated the impact of straw fibers on RPC’s workability, mechanical performance (mechanical strength and flexural toughness), and electrical properties (electrical resistance and AC impedance spectroscopy curves). The straw fiber volumes ranged from 1% to 4.0% of the total RPC volume. Specimens were cured under standard curing conditions for 3, 7, 14, and 28 days. Mechanical and electrical properties of the specimens were tested before chloride salt erosion. The mass loss and ultrasonic velocity loss of the samples were measured under NaCl freeze–thaw cycles (F-Cs). The mass loss, ultrasonic velocity loss, and mechanical strengths loss of the samples were measured under NaCl dry–wet alternations (D-As). The findings indicated that incorporating straw fibers enhanced RPC’s flexural strength, compressive strength, and flexural toughness by 21.3% to 45.76%, −7.16% to 11.62%, and 2.4% to 32.7%, respectively, following a 28-day curing period. The addition of straw fibers could augment the AC electrical resistance of the RPC by 10.17% to 58.1%. The electrical characteristics of the RPC adhered to series conduction models. A power function relationship existed between the electrical resistance and mechanical strengths of the RPC. After 10 NaCl D-As, the mass loss rate, ultrasonic velocity loss rate, flexural strength, and compressive strength loss rates of the RPC decreased by 0.42% to 1.68%, 2.69% to 6.73%, 9.6% to 35.65%, and 5.41% to 34.88%, respectively, compared to blank samples. After undergoing 200 NaCl F-Cs, the rates of mass loss and ultrasonic velocity loss of the RPC decreased by 0.89% to 1.01% and 6.68% to 8.9%, respectively.