Among the components to be upgraded in LHC interaction regions for the HiLumi-LHC projects are the inner triplet (or low-β) quadrupole magnets, denoted as Q1, Q2a, Q2b, and Q3. The new quadrupole magnets, called MQXF, are based on Nb3Sn superconducting magnet technology and operate at a gradient of 132.6 T/m with a conductor peak field of 11.4 T. The Q1 and Q3 are composed by magnets (called MQXFA) fabricated by the US Accelerator Upgrade Project (AUP) with a magnetic length of 4.2 m. The Q2a and Q2b consists of magnets (called MQXFB) fabricated by CERN with a magnetic length of 7.15 m. After a series of short models, constructed in close collaboration by the US and CERN, the development program is now entering in the prototyping phase, with CERN on one side and BNL, FNAL, and LBNL on the other side assembling and testing their first long magnets. We provide in this paper a description of the status of the MQXF program, with a summary of the short model test results, including quench performance, and mechanics, and an update on the fabrication, assembly and test of the long prototypes.