In recent years airborne Light Detection and Ranging (LiDAR) technology has received a great deal of attention. Using airborne LiDAR, analysts have successfully related height measurements to forest characteristics such as tree size, basal area, and number of trees. Similarly, National Agricultural Imagery Program (NAIP) digital aerial imagery in combination with elevation datasets such as the National Elevation Dataset (NED) have been used to estimate similar forest characteristics. Few comparisons, however, have been made between using airborne LiDAR, NAIP, and NED to estimate forest characteristics. In this study we compare airborne LiDAR, NAIP, and NAIP assisted NED based models of forest characteristics commonly used within forest management at the spatial scale of field plots and forest stands. Our findings suggest that there is a high degree of similarity in model fit and estimated values when using LiDAR, NAIP, and NAIP assisted NED predictor variables.