The development of astronomy relies heavily on advances in high-resolution imaging techniques. With the growing demand for high-resolution astronomical observations, conventional optical interferometry has gradually revealed various limitations, especially in coping with atmospheric phase fluctuations and long baseline observations. However, intensity interferometry is becoming an important method to overcome these challenges due to its high robustness to atmospheric phase fluctuations and its excellent performance in long-baseline observations. In this paper, the basic principles and key technologies of intensity interferometry are systematically described, and the remarkable potential of this technique for improving angular resolution and detection sensitivity is comprehensively discussed in light of the recent advances in modern photon detector and signal processing techniques. The results show that the intensity interferometry technique is capable of realizing high-precision observation of long-range and low-brightness targets, especially in the field of exoplanet detection, which shows a wide range of application prospects. In the future, with the continuous development of telescope arrays and adaptive optics, the intensity interferometry technique is expected to further promote the precision and breadth of astronomical observations, and provide new opportunities for revealing the mysteries of the universe.