Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The significant recent advances in computer speed and memory have made possible an increasing fidelity and accuracy in reactor core simulation with minimal increase in the computational burden. This has been important for modeling some of the smaller advanced reactor designs for which simplified approximations such as few groups homogenized diffusion theory are not as accurate as they were for large light water reactor cores. For narrow cylindrical cores with large surface to volume ratios such the Ped Bed Modular Reactor (PBMR), neutron leakage from the core can be significant, particularly with the harder neutron spectrum and longer mean free path than a light water reactor. In this paper the core from the OECD PBMR-400 benchmark was analyzed using multigroup Monte Carlo cross sections in the HTR reactor core simulation code AGREE. Homogenized cross sections were generated for each of the discrete regions of the AGREE model using a full core SERPENT Monte Carlo model. The cross sections were generated for a variety of group structures in AGREE to assess the importance of finer group discretization on the accuracy of the core eigenvalue and flux predictions compared to the SERPENT full core Monte Carlo solution. A significant increase in the accuracy was observed by increasing the number of energy groups, with as much as a 530 pcm improvement in the eigenvalue calculation when increasing the number of energy groups from 2 to 14. Significant improvements were also observed in the AGREE neutron flux distributions compared to the SERPENT full core calculation.
The significant recent advances in computer speed and memory have made possible an increasing fidelity and accuracy in reactor core simulation with minimal increase in the computational burden. This has been important for modeling some of the smaller advanced reactor designs for which simplified approximations such as few groups homogenized diffusion theory are not as accurate as they were for large light water reactor cores. For narrow cylindrical cores with large surface to volume ratios such the Ped Bed Modular Reactor (PBMR), neutron leakage from the core can be significant, particularly with the harder neutron spectrum and longer mean free path than a light water reactor. In this paper the core from the OECD PBMR-400 benchmark was analyzed using multigroup Monte Carlo cross sections in the HTR reactor core simulation code AGREE. Homogenized cross sections were generated for each of the discrete regions of the AGREE model using a full core SERPENT Monte Carlo model. The cross sections were generated for a variety of group structures in AGREE to assess the importance of finer group discretization on the accuracy of the core eigenvalue and flux predictions compared to the SERPENT full core Monte Carlo solution. A significant increase in the accuracy was observed by increasing the number of energy groups, with as much as a 530 pcm improvement in the eigenvalue calculation when increasing the number of energy groups from 2 to 14. Significant improvements were also observed in the AGREE neutron flux distributions compared to the SERPENT full core calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.