Over the last two decades, the UAE’s construction sector has grown significantly with the development of tall buildings, but the region faces seismic risks. Similar concerns in China led to earthquake simulation research on a city scale. The objectives include developing programming for parallel computing and creating simplified models for estimating losses. The challenges include computational complexity and uncertainties in various modules. In 1995, the structural engineering community adopted performance-based engineering principles, shifting to a probabilistic design process. The Computational Modeling and Simulation Center (SimCenter) implemented this into a generic software platform, with the 2010 release of Regional Resilience Determination (R2D) automating the methodology. A research plan aims to advance realistic seismic simulation in the UAE, integrating studies and custom developments. The goal is to create an end-to-end seismic risk assessment framework aligned with digital trends, such as BIM and GIS. The investigation focuses on a virtual dataset for tall buildings, considering variations in location, material properties, height, and seismic activity. For the studied archetypes, the average expected losses include a 3.6% collapse probability, a 14% repair cost, 22 days repair time per asset, and almost 1.5% total population injuries, ranging from 1% for the lowest severity to 0.15% for the highest.