The maximum gasification rate of corn stalk char (CSC) appeared at high conversion range, and its quite different gasification behaviors from other carbonaceous materials are all derived from the catalytic effect of alkali and alkali earth metals (AAEMs), so it is necessary to study the effect of AAEMs and gasification kinetics of such biomass char. However, there are few systematic discussions about this effect and kinetic modeling. Thus, in this study, CSC samples were prepared in a fast pyrolysis fixed-bed reactor, and its gasification experiments were conducted on a pressurized magnetic suspension balance at various total pressures (0.1–0.7 MPa), steam concentrations (10–70 vol.%) and temperatures (725–900 °C). Moreover, a water-leached CSC (H2O-CSC) was also prepared to evaluate the impact of AAEMs on the gasification performance of CSC, and some well-known models were adopted to describe the gasification behaviors. On the basis of these results, the effect of primary AAEMs on the gasification behaviors of CSC and gasification kinetic modeling were obtained. Results showed total pressure had no obvious influence on the gasification rate of CSC, and the reaction order varied at 0.43–0.55 with respect to steam partial pressures. In addition, the modified random pore model (MRPM) and Langmuir–Hinshelwood (L-H) model were satisfactorily applied to predict the gasification behaviors of CSC. The catalytic effect of AAEMs on CSC gasification was weakened due to water-leaching treatment. A random pore model (RPM) could describe the gasification behavior of H2O-CSC well, followed by grain model (GM) and volumetric model (VM).