AMD3100 is a small-molecule inhibitor of the C-X-C motif chemokine ligand 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) axis, while its role in aggrecan metabolism is unclear. We hypothesized that the AMD3100 modulates the transforming growth factor-b1 (TGF-b1)-induced expression of tissue inhibitor of metalloproteinase-3 (TIMP-3) in chondrocytes. We evaluated expression of CXCL12/CXCR4 and TIMP-3 in the knee joints of rats with and without osteoarthritis (OA) by immunohistochemistry, immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay (ELISA). The rats were divided into sham control, destabilization of the medial meniscus/ AMD3100-treated (DMM/AMD3100-treated), and DMM/phosphate-buffered saline (PBS)treated groups. After 6 weeks, the rats were euthanized and subjected to histological and immunohistochemical analyses. Also, interleukin (IL)-1-pretreated primary chondrocytes were cultured in the presence of empty control (−, −), CXCL12a (+,−), CXCL12a + small interfering RNA (siRNA) CXCR4 (+,+), or CXCL12a + siNC (+NC), and the expression levels of target markers were evaluated by Western blotting and real-time reverse transcription PCR (RT-PCR). The CXCL12/CXCR4 levels were higher, and the expression of TIMP-3 was lower, in the OA rats compared to the healthy control rats. The rats in the DMM/AMD3100treated group revealed a markedly decreased immunological response and mild pathology. Treatment with CXCL12a increased expression of aggrecan and disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) and suppressed that of TIMP-3 in IL-1-pretreated primary chondrocytes. TGF-b1 increased expression of TIMP-3, and this increase was reversed by CXCL12a via the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Moreover, these effects were inhibited by the CXCR4 antagonist