Purpose of review
The aim of this article is to summarize current research on novel gene, stem cell, neuroprotective, nanomedicine, and vascular therapies for glaucoma.
Recent findings
Gene therapy using viral vectors and siRNA have been shown to reduce intraocular pressure by altering outflow and production of aqueous humor, to reduce postsurgical fibrosis with few adverse effects, and to increase retinal ganglion cell (RGC) survival in animal studies. Stem cells may treat glaucoma by replacing or stimulating proliferation of trabecular meshwork cells, thus restoring outflow facility. Stem cells can also serve a neuroprotective effect by differentiating into RGCs or preventing RGC loss via secretion of growth factors. Other developing neuroprotective glaucoma treatments which can prevent RGC death include nicotinamide, the NT-501 implant which secretes ciliary neurotrophic factor, and a Fas-L inhibitor which are now being tested in clinical trials. Recent studies on vascular therapy for glaucoma have focused on the ability of Rho Kinase inhibitors and dronabinol to increase ocular blood flow.
Summary
Many novel stem cell, gene, neuroprotective, nanomedicine, and vascular therapies have shown promise in preclinical studies, but further clinical trials are needed to demonstrate safety and efficacy in human glaucomatous eyes. Although likely many years off, future glaucoma therapy may take a multifaceted approach.