To determine the ability of cultured bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into functional urothelium. BMSCs were isolated from the long bones of aborted fetal limbs by Percoll density gradient centrifugation and characterized by flow cytometry. Human fetal urinary bladders were cut into small pieces and cultured for 3-5 days until the growth of urothelial cells was established. BMSCs were then cocultured with neonatal urothelial cells and subsequently evaluated for antigen expression and ultramicrostructure, by immunocytochemistry and electron microscopy, respectively. A subset of BMSCs expressed the differentiation marker CD71. The BMSC markers CD34, CD45, and HLA-DR were barely detectable, confirming that these cells were not derived from hematopoietic stem cells or differentiated cells. In contrast, the stem cell markers CD29, CD44, CD105, and CD90 were highly expressed. BMSCs possessed the ability to differentiate into a variety of cellular subtypes, including osteocytes, adipocytes, and chondrocytes. The shapes of BMSCs changed, and the size of the cells increased, following in vitro coculture with urothelial cells. After 2 weeks of coculture, immunostaining of the newly differentiated BMSCs positively displayed the urothelialspecific keratin marker. Electron microscopy revealed that the cocultured BMSCs had microstructural features characteristic of epithelial cells. Pluripotent BMSCs can transdifferentiate into urothelial cells in response to an environment conditioned by neonatal urothelial cells, providing a means for the time-, labor-and cost-effective reconstruction of urinary bladder mucosa.