Theoretical concerns about the use of cemented and press-fit stems in revision total knee arthroplasty (TKA) include stress shielding with adverse effects on prosthesis fixation. Radiological studies have showed distal femoral bone resorption after revision TKA. The revision with use of stems can place abnormal stresses. These stresses can promote the effect of bone stress shielding and may contribute to bone loss. Experimental quantification of strain shielding in the distal synthetic femur following TKA is the main purpose of the present study. Three different constructs of TKA were assessed. The first construct included a stemless femoral component. The other two included a press-fit and a cemented femoral stem. Cortical bone strains were measured experimentally with tri-axial strain gauges in synthetic femurs before and after in-vitro knee surgery. The difference between principal strains of implanted and intact femur was calculated for each strain gauge position. This study indicates that the use of stems in distal femur changes the distribution and magnitude of bone strains. The press-fit stem provoked relevant bone area (stem length) subjected to strain shielding and also originated the highest reduction of strains in the distal region, which can potentially induce bone resorption. The stemless implanted femur produced minor bone strain changes relatively to the intact femur. The use of distal femur stems increases initial stability in the bone, but the observed reduction of strains in this region, relative to the intact femur, provokes strain shielding that can induce bone resorption and may compromise the long term implant stability.