With the rapid development of sports science, human motion recognition technology, as a new biometric recognition technology, has many advantages, such as noncontact target, long recognition distance, secret recognition process, and so on. Traditional human motion recognition technology is affected by environmental factors such as motion background, which is prone to rough edges of the recognized objects and loss of motion tracking information, thus further reducing the recognition accuracy. In this paper, the traditional snake model will be improved and optimized to improve the defect of human motion model contour extraction, so as to realize the accurate repair of image contour; in terms of algorithm running time, this paper innovatively improves the construction process of the snake model, further improves the running time of model evaluation, and solves the concave contour problem of corresponding moving objects in the snake model. In order to solve the problem of accurate convergence, this paper improves the snake model of the average moving algorithm and sets the corresponding weight coefficient to distinguish the corresponding moving target background, so as to achieve the convergence of the differential concave contour. In order to verify the superiority of the improved optimized snake model, experiments are carried out in the corresponding database. The experimental results show that the contour of the moving object extracted by the improved snake model algorithm is complete and the segmentation effect is obvious. At the same time, the running speed of the whole algorithm has been significantly improved.