Liquid–solid fluidized beds have a wide range of applications in metallurgical processing, mineral processing, extraction, and wastewater treatment. Great interest on their flow stability and heterogeneous fluidization behaviors has been aroused in research. In this study, various fluidization experiments were performed by adjusting the operating conditions of particle size, particle density, and liquid superficial velocity. For each case, the steady state of liquid–solid fluidization was obtained, and the bed expansion height and pressure drop characteristics were analyzed. The time evolution of pressure drop at different bed heights can truly reflect the liquid–solid heterogeneous fluidization behaviors that are determined by operating conditions. With the increase in superficial liquid velocity, three typical fluidization stages were observed. Accordingly, the flow resistance coefficient was obtained based on the experimental data of bed expansion height and pressure drop. The flow resistance coefficient experiences a decrease with the increase in the modified particle Reynolds number and densimetric Froude number.