Accurate estimation of three-dimensional (3D) information from captured images is essential in numerous computer vision applications. Although binocular stereo vision has been extensively investigated for this task, its reliability is conditioned by the baseline between cameras. A larger baseline improves the resolution of disparity estimation but increases the probability of matching errors. This research presents a reliable method for disparity estimation through progressive baseline increases in multiocular vision. First, a robust rectification method for multiocular images is introduced, satisfying epipolar constraints and minimizing induced distortion. This method can improve rectification error by 25% for binocular images and 80% for multiocular images compared to well-known existing methods. Next, a dense disparity map is estimated by stereo matching from the rectified images with the shortest baseline. Afterwards, the disparity map for the subsequent images with an extended baseline is estimated within a short optimized interval, minimizing the probability of matching errors and further error propagation. This process is iterated until the disparity map for the images with the longest baseline is obtained. The proposed method increases disparity estimation accuracy by 20% for multiocular images compared to a similar existing method. The proposed approach enables accurate scene characterization and spatial point computation from disparity maps with improved resolution. The effectiveness of the proposed method is verified through exhaustive evaluations using well-known multiocular image datasets and physical scenes, achieving superior performance over similar existing methods in terms of objective measures.