The most expressive way of communication for individuals who have trouble speaking or hearing is sign language. Normal people are unable to comprehend sign language. As a result, communication barriers are put up. Majority of people are right-handed. Statistics say that, an average population of left-handed person in the world is about 10%, where they use left hand as their dominating hand. In case of hand written text recognition, if the text is written by left-handed or right-handed person, then there would not be any problem in recognition neither for human and nor for computer. But same thing is not true for sign language and its detection using computer. When the detection is performed using computer vision and if it falls into the category of detection by appearance, then it might not detect correctly. In machine and deep learning, if the model is trained using just one dominating hand, let’s say right hand, then the predictions can go wrong if same sign is performed by left-handed person. This paper addresses this issue. It takes into account the signs performed by any type of signer: left-handed, right-handed or ambidexter. In proposed work is on Indian Sign Language (ISL). Two models are trained: Model I, is trained on one dominating hand and Model II, is trained on both the hands. Model II gives correct predictions regardless of any type of signer. It recognizes alphabets and numbers in ISL. We used the concept of Key points and Transfer Learning techniques for implementation. Using this approach, models get trained quickly and we could achieve validation accuracy of 99%.