A new molecular-based velocity method is developed for high-temperature flame gases based on the hydroxyl tagging velocimetry (HTV) technique. In vibrationally excited HTV (VE-HTV), two photons from a KrF laser (248 nm) dissociate H2O into a tag line of vibrationally excited OH (v=1). The excited state OH tag is selectively detected in a background of naturally occurring ground state OH (v=0). In atmospheric pressure laboratory burners, the OH (v=1) tag persists for 5-10 μs, allowing single-shot velocity measurements along a 2 cm line under lean, stoichiometric, and rich flame conditions with temperatures reaching 2300 K. Mean velocity measurements are demonstrated in a lean (ϕ=0.78) premixed H2/air turbulent flame (Re=26,550) laboratory flame. The VE-HTV method is best suited to measure high-speed velocities in hot combustion environments in the presence of background OH.