Substituent effects and the role of negative hyperconjugation in 1,2-silyl migration and decarbonylation of methoxy(substituted-siloxy)carbenes have been investigated using quantum chemical calculations and natural bond orbital analysis. It has been found that sigma-electron-withdrawing substituents generally lower the barriers for 1,2-silyl migration and decarbonylation, consistent with symmetry-forbidden concerted rearrangements involving intramolecular front-side nucleophilic attack by the carbene lone pair at silicon and by the methoxy oxygen at silicon, respectively. However, while good linear Hammett correlations are obtained for 1,2-silyl migration, those obtained for decarbonylation are poor. In addition, there appears to be a relationship between the extent of pertinent hyperconjugative interactions in the siloxycarbene conformers and the ease of intramolecular reactivity. As a matter of fact, the finding that 1,2-silyl migration is more favorable than decarbonylation seems to be primarily related to stronger negative hyperconjugation between the carbene lone pair and the O-Si antibonding orbital, compared to that between the methoxy oxygen n(sigma) lone pair and the O-Si antibonding orbital. Moreover, the activation enthalpies for 1,2-silyl migration decrease linearly with stronger negative hyperconjugation, although no such correlation could be established for decarbonylation.