We have identified a series of potent cholesteryl ester transfer protein (CETP) inhibitors, one member of which, torcetrapib, is undergoing phase 3 clinical trials. In this report, we demonstrate that these inhibitors bind specifically to CETP with 1:1 stoichiometry and block both neutral lipid and phospholipid (PL) transfer activities. CETP preincubated with inhibitor subsequently bound both cholesteryl ester and PL normally; however, binding of triglyceride (TG) appeared partially reduced. Inhibition by torcetrapib could be reversed by titration with both native and synthetic lipid substrates, especially TG-rich substrates, and occurred to an equal extent after long or short preincubations. The reversal of TG transfer inhibition using substrates containing TG as the only neutral lipid was noncompetitive, suggesting that the effect on TG binding was indirect. Analysis of the CETP distribution in plasma demonstrated increased binding to HDL in the presence of inhibitor. Furthermore, the degree to which plasma CETP shifted from a free to an HDL-bound state was tightly correlated to the percentage inhibition of CE transfer activity. The finding by surface plasmon resonance that torcetrapib increases the affinity of CETP for HDL by z5-fold likely represents a shift to a binding state that is nonpermissive for lipid transfer. In summary, these data are consistent with a mechanism whereby this series of inhibitors block all of the major lipid transfer functions of plasma CETP by inducing a nonproductive complex between the transfer protein and HDL. Despite the demonstration of the atheroprotective effects of HDL over the past several decades (1-4), no current therapy exists that is effective and well tolerated for increasing the levels of this lipoprotein (5). Although the use of extended-release niacin (Niaspan) at daily doses of 2 g or less has served to minimize the high incidence of vasodilatory effects, such as flushing and itching (6), toleration issues continue to limit compliance. Also, at 2 g/day, niacin increases high density lipoprotein cholesterol (HDL-C) by ,30% (7). The high levels of HDL associated with human cholesteryl ester transfer protein (CETP) deficiency (8) have suggested CETP inhibition as a means of increasing HDL. Although expression of human CETP in transgenic mice has produced mixed results regarding its atherogenicity, more consistent antiatherogenic effects have resulted from the inhibition of endogenous CETP in rabbits (8). In the wake of the beneficial effects observed through CETP inhibition in rabbits by induction of autoantibodies (9) and by administration of a synthetic inhibitor (10), these interventions have progressed to trials aimed at increasing HDL in humans. Although the use of the CETP vaccine has yet to demonstrate sufficient anti-CETP response to increase HDL (11), 900 mg/day of the inhibitor JTT-705 increased HDL-C by 34% and decreased low density lipoprotein cholesterol (LDL-C) by 7% (12).We have identified a new series of CETP inhibitors culminating in the dev...