Monocyclic and tricyclic compounds possessing a nitrogen atom situated at a position corresponding to the carbenium ion of high energy intermediates or transition states involved during cyclization of 2,3-oxidosqualene to tetra- and pentacyclic triterpenes have been synthesized. These compounds were tested as inhibitors of 2,3-oxidosqualene cycloartenol, lanosterol-, and beta(alpha)-amyrin-cyclases in vitro and in vivo, and their affinity was compared to that of formerly synthesized 8-aza-bicyclic compounds [Taton et al. (1986) Biochem. Biophys. Res. Commun. 138, 764-770]. A monocyclic N-alkyl-hydroxypiperidine was shown to be the strongest inhibitor of the series upon cycloartenol-cyclase (I50 = 1 microM) from maize embryos but was much less effective on the beta(alpha)-amyrin-cyclases from Rubus fruticosus suspension cultures or pea cotyledons. In contrast, 13-aza-tricyclic derivatives displayed little inhibition on 2,3-oxidosqualene cycloartenol-, lanosterol-, and beta(alpha)-amyrin-cyclases. The obtained data exemplify the differences existing in the cyclization process between cycloartenol- (lanosterol-) cyclases on one hand and beta(alpha)-amyrin-cyclases on the other. The results are discussed with respect to current mechanisms postulated for 2,3-oxidosqualene cyclization. Because of its activity in vivo and in vitro the monocyclic N-alkyl-hydroxypiperidine appears to be a potent and promising tool to study sterol biosynthesis regulation.