1965
DOI: 10.1002/mana.19650300107
|View full text |Cite
|
Sign up to set email alerts
|

Stetige Konvergenz und der Satz von Ascoli und Arzelà

Abstract: Der klassische Satz von ASCOLI und ARZEL;~ iiber Kompaktheit in C ([0, I]), dem Raum der StetigenFunktionen auf dem Interval1 [0, 13 (versehen mit der uniformen Topologie) ist mehrfach verallgemeinert worden : z. B. auf Systeme (stetiger) Abbildungen eines topologischen Raumes in einen uniformen Raum (z. B. [ 5 ] ) , aber sogar auch auf Systeme (stetiger) Abbildungen zwischen zwei topologischen Raiumen, versehen mit der ,,cornpact-open topology" (Topologie der kompakten Konvergenz) (z. B. [ 121).Man geht dabei… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

1967
1967
2001
2001

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(2 citation statements)
references
References 15 publications
0
2
0
Order By: Relevance
“…In [14], Kelley defined even continuous mappings between topological spaces, and Poppe [19] generalized this notion to sets of continuous mappings between limit spaces. The following is straightforward transcription of these definitions to L-spaces.…”
Section: Even Continuitymentioning
confidence: 99%
“…In [14], Kelley defined even continuous mappings between topological spaces, and Poppe [19] generalized this notion to sets of continuous mappings between limit spaces. The following is straightforward transcription of these definitions to L-spaces.…”
Section: Even Continuitymentioning
confidence: 99%
“…Since G and (G, ¿) have the same compact sets, the topology on G^ is just its relative topology as a subset of C((G, k), T). Thus, by an Ascoli Theorem of sufficient generality (see for instance [3], [14] or [12]), and the fact that every subset of C((G, k), T) is bounded, a subset of G^ is compact if and only if it is closed in C((G, k), T) and evenly continuous on (G, ¿). By the lemma just proved, each set in 3$~ is evenly continuous on G and hence on (G, ¿).…”
Section: Conventionmentioning
confidence: 99%