Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Acinetobacter baumannii A118, a mostly susceptible strain and AB5075, carbapenem-resistant, were cultured in Lysogeny broth (LB) or LB with different supplements: 3.5% human serum albumin (HSA), human serum (HS), meropenem, or meropenem plus 3.5% HSA. Natural transformation levels were enhanced in A. baumannii A118 and AB5075 cultured in medium supplemented with 3.5% HSA. Addition of meropenem plus 3.5% HSA caused synergistic enhancement of natural transformation in A. baumannii A118. Medium containing 3.5% HSA or meropenem enhanced the expression levels of the competence and type IV pilus associated genes. The combination meropenem plus 3.5% HSA produced a synergistic enhancement in the expression levels of many of these genes. The addition of HS, which has a high content of HSA, was also an inducer of these genes. Cultures grown in medium supplemented with HS or 3.5% HSA also affected resistance genes, which were expressed at higher or lower levels depending on the modification required to enhance resistance. The inducing or repressing activity of these modulators also occurred in three more carbapenem-resistant strains tested. An exception was the A. baumannii AMA16 bla NDM-1 gene, which was repressed in the presence of 3.5% HSA. In conclusion, HSA produces an enhancement of natural transformation and a modification in expression levels of competence genes and antibiotic resistance. Furthermore, when HSA is combined with carbapenems, which may increase the stress response, the expression of genes involved in natural competence is increased in A. baumannii . This process may favor the acquisition of foreign DNA and accelerate evolution. Importance Acinetobacter baumannii causes a variety of nosocomial- and community-infections that are usually resistant to multiple antimicrobial agents. As new strains acquire more resistance genes, these infections become more difficult to treat and mortality can reach up to 39%. The high genomic plasticity exhibited by A. baumannii must be the consequence of numerous mechanisms that include acquiring foreign DNA and recombination. Here, we describe the ability of A. baumannii to induce competence genes when exposed to environments that resemble those found in the human body during untreated infection or after administration of carbapenems. In this latter scenario expression of genes related to resistance also modify their expression levels such that resistance is increased. The contributions of this article are two-fold. Firstly, when A. baumannii is exposed to products present during infection, it responds, augmenting the ability to capture DNA and accelerate evolution. Secondly, in those conditions, the bacterium also modifies the expression of resistance genes to increase its resistance levels. In summary, recognition of substances that are naturally (e.g., HSA) or artificially (treatment with carbapenems) induces A. baumannii to enhance expression of resistance determinants and genes regulating competence.
Acinetobacter baumannii A118, a mostly susceptible strain and AB5075, carbapenem-resistant, were cultured in Lysogeny broth (LB) or LB with different supplements: 3.5% human serum albumin (HSA), human serum (HS), meropenem, or meropenem plus 3.5% HSA. Natural transformation levels were enhanced in A. baumannii A118 and AB5075 cultured in medium supplemented with 3.5% HSA. Addition of meropenem plus 3.5% HSA caused synergistic enhancement of natural transformation in A. baumannii A118. Medium containing 3.5% HSA or meropenem enhanced the expression levels of the competence and type IV pilus associated genes. The combination meropenem plus 3.5% HSA produced a synergistic enhancement in the expression levels of many of these genes. The addition of HS, which has a high content of HSA, was also an inducer of these genes. Cultures grown in medium supplemented with HS or 3.5% HSA also affected resistance genes, which were expressed at higher or lower levels depending on the modification required to enhance resistance. The inducing or repressing activity of these modulators also occurred in three more carbapenem-resistant strains tested. An exception was the A. baumannii AMA16 bla NDM-1 gene, which was repressed in the presence of 3.5% HSA. In conclusion, HSA produces an enhancement of natural transformation and a modification in expression levels of competence genes and antibiotic resistance. Furthermore, when HSA is combined with carbapenems, which may increase the stress response, the expression of genes involved in natural competence is increased in A. baumannii . This process may favor the acquisition of foreign DNA and accelerate evolution. Importance Acinetobacter baumannii causes a variety of nosocomial- and community-infections that are usually resistant to multiple antimicrobial agents. As new strains acquire more resistance genes, these infections become more difficult to treat and mortality can reach up to 39%. The high genomic plasticity exhibited by A. baumannii must be the consequence of numerous mechanisms that include acquiring foreign DNA and recombination. Here, we describe the ability of A. baumannii to induce competence genes when exposed to environments that resemble those found in the human body during untreated infection or after administration of carbapenems. In this latter scenario expression of genes related to resistance also modify their expression levels such that resistance is increased. The contributions of this article are two-fold. Firstly, when A. baumannii is exposed to products present during infection, it responds, augmenting the ability to capture DNA and accelerate evolution. Secondly, in those conditions, the bacterium also modifies the expression of resistance genes to increase its resistance levels. In summary, recognition of substances that are naturally (e.g., HSA) or artificially (treatment with carbapenems) induces A. baumannii to enhance expression of resistance determinants and genes regulating competence.
Milk fever and subclinical hypocalcaemia are the most important mineral metabolic disorders of dairy cows in transition period. Cows will experience the lactation during transition period while their minerals may be out of balance, which results in milk fever and subclinical hypocalcemia. As for cows' production diseases, milk fever is related with many other diseases, it can serve as a susceptible factor causing the cascade of diseases in transition cows. This research recapitulated the physiological and clinical consequences which was caused by the milk fever and subclinical hypocalcemia, and provided a theoretical basis for clinical prevention and treatment of milk fever and subclinical hypocalcemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.