The last decade created tremendous advances in new and unique thermoelectric generation materials, devices, fabrication techniques, and technologies via various global research and development. This article seeks to elucidate and highlight some of these advances to lay foundations for future research work and advances. New advanced methods and demonstrations in TE device and material measurement, materials fabrication and composition advances, and device design and fabrication will be discussed. Other articles in this Special Issue present additional new research into materials fabrication and composition advances, including multi-dimensional additive manufacturing and advanced silicon germanium technologies. This article will discuss the most recent results and findings in thermoelectric system economics, including highlighting and quantifying the interrelationships between thermoelectric (TE) material costs, TE manufacturing costs and most importantly, often times dominating, the heat exchanger costs in overall TE system costs. We now have a methodology for quantifying the competing TE system cost-performance effects and impacts. Recent findings show that heat exchanger costs usually dominate overall TE system cost-performance tradeoffs, and it is extremely difficult to escape this condition in TE system design. In regard to material performance, novel or improved enhancement principles are being effectively implemented. Furthermore, in addition to further advancements in properties and module developments of relatively established champion materials such as skutterudites, several high performance ZT ≈≥ 2 new material systems such as GeTe, Mg3(Sb,Bi)2 have also been relatively recently unearthed and module applications also being considered. These recent advancements will also be covered in this review.