Abstract:Cooling structures require sufficient thermal conductivity. However, structure with thermal conducting could suffer high temperature, and thermal deformation could become serious. Thus, designing structures suppressing thermal deformation is an important task for designing cooling structures. Structural characteristics like stiffness and thermal conductivity are affected by structural shape. Thus, we intend to design structure with sufficient thermal conductivity, small thermal deformation, and light weight. S… Show more
This paper presents a numerical solution to multi-objective shape optimization in order to achieve stiffness maximization in thermoelastic fields. Compliance evaluated by thermal deformation based on temperature distribution and by mechanical deformation based on surface force or body force is used as an objective functional by using weighting method.Shape gradient of the multi-objective shape problem is derived theoretically using the Lagrange multiplier method, adjoint variable method, and the formulae of the material derivative. Reshaping is carried out by the traction method proposed as an approach to solving shape optimization problems. Numerical analyses program for the shape optimization is developed based on FreeFem++, and the validity of proposed method is confirmed by results of 2D numerical analyses.
This paper presents a numerical solution to multi-objective shape optimization in order to achieve stiffness maximization in thermoelastic fields. Compliance evaluated by thermal deformation based on temperature distribution and by mechanical deformation based on surface force or body force is used as an objective functional by using weighting method.Shape gradient of the multi-objective shape problem is derived theoretically using the Lagrange multiplier method, adjoint variable method, and the formulae of the material derivative. Reshaping is carried out by the traction method proposed as an approach to solving shape optimization problems. Numerical analyses program for the shape optimization is developed based on FreeFem++, and the validity of proposed method is confirmed by results of 2D numerical analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.