This paper discusses the design and development of a new Modular, Autonomously Reconfigurable Serial manipulator platform for advanced manufacturing, termed as the MARS manipulator. The platform consists of i) an 18-Degree-of-Freedom (DOF) serial-link manipulator capable of locking any of its joints at any position in their continuous range, such that it can emulate fewer-DOF serial manipulators with different kinematic and dynamic parameters, and ii) an integrated simulation and design environment that provides control over the manipulator hardware as well as a toolset for the design, implementation and optimization of a desired manipulator configuration for a given task. The effectiveness of the MARS manipulator to adapt its configuration to various tasks is examined by assuming two well-known configurations, SCARA and articulated, and by performing a specific task with each of them. The variation in effectiveness of the two configurations in terms of the end-effector trajectory, endeffector accuracy and power consumption is discussed. Further, these configurations are optimized with respect to their performance accuracy, and compared to their preoptimized versions. Finally, the accuracy model of the simulation is compared against the physical hardware system, running the same task.