The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.biodiversity | extinctions | invasive species | novel ecosystems | Anthropocene The reshaping of global biodiversity is one of the most significant impacts humans have had on Earth's ecosystems. As our planet experiences its sixth "mass extinction event" (1), the effect of anthropogenic landscape modification, habitat fragmentation, overexploitation, and species invasions could not be more apparent (2, 3). These transformations are linked largely to the industrial economies, burgeoning populations, and dense transport networks of contemporary human societies. Accordingly, the humanmediated alteration of species distributions has been characterized as a modern phenomenon with limited, and largely insignificant, historical antecedents. This conventional understanding fails to account for several decades of archaeological, paleoecological, and genetic research that reveal a long and widespread history of human transformation of global biodiversity (4-6). The evolutionary trajectory of Homo sapiens has seen growing capacities for advanced cognition and demographic and geographic expansion, along with an exponential increase in the scope and impact of human niche constructing activities (7) that have culminated in fundamental changes to planetary ecosystems.Drawing upon findings from ...