We report the first experimental demonstration of stimulated Raman adiabatic passage (STIRAP) in nuclear-spin transitions of 14N within nitrogenvacancy (NV) color centers in diamond. It is shown that the STIRAP technique suppresses the occupation of the intermediate state, which is a crucial factor for improvements in quantum sensing technology. Building on that advantage, we develop and implement a generalized version of the Ramsey interferometric scheme, employing half-STIRAP pulses to perform the necessary quantum-state manipulation with high fidelity. The enhanced robustness of the STIRAP-based Ramsey scheme to variations in the pulse parameters is experimentally demonstrated, showing good agreement with theoretical predictions. Our results pave the way for improving the long-term stability of diamond-based sensors, such as gyroscopes and frequency standards.