1 The pharmacological properties of RS 23597-190 (3-(piperdine-1-yl)-propyl-4-amino-5-chloro-2-methoxy benzoate hydrochloride) have been studied in vitro and in vivo.2 RS 23597-190 competitively antagonized 5-HT4 receptor-mediated relaxations of rat, carbachol precontracted oesophageal muscularis mucosae, (pA2 = 7.8 ± 0.1; Schild slope = 1.2 ± 0.2). Affinity estimates (-log KB) at 5-HT4 receptors using either renzapride or SC-53116 as agonists yielded a -log KB value of 8.0 ± 0.01. In contrast, RS 23597-190 failed to antagonize contractile responses to 5-HT of guinea-pig ileal 5-HT3 receptors, even at concentrations up to 10 tiM. 3 Increases in short-circuit current, induced by 5-HT, were studied in guinea-pig ileal mucosal sheets. Concentration-response curves to 5-HT were biphasic, with the high potency phase to 5-HT inhibited by RS 23597-190 and mimicked by 5-methoxytryptamine. The -log KB value for RS 23597-190 at the high potency phase was 7.3 confirming that 5-HT4 receptors mediated the high potency phase. min. Transient arrhythmic effects were noted after administration of the compound. 7 In conclusion, RS 23597-190 acts as a high affinity, selective competitive antagonist at 5-HT4 receptors. Thus, the compound appears to be a useful tool for 5-HT4 receptor identification in vitro. In vivo, the compound is rapidly metabolized in pigs such that 5-HT4 blockade is not maintained. However, in the rat, when given by infusion, RS 23597-190 antagonizes 5-HT3 mediated responses, at doses consistent with a low affinity 5-HT3 receptor. These data suggest that, under appropriate experimental conditions, RS 23597-190 may also be used in vivo to characterize further 5-HT4 receptor function.