The corpus luteum formed after luteinization of follicular cells secretes progesterone under the control of luteinizing hormone (LH). Binding of LH to its G-protein-coupled receptor leads to the activation of the adenylate cyclase/ cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) signalling pathway. The identification of a new class of cAMP-binding proteins termed 'guanine nucleotide exchange factors' (cAMP-GEFs) provides a means by which changes in cAMP could yield actions that are independent of PKA. Hence, in this study, we have explored the hypothesis that steroidogenesis in luteinizing cells is mediated in both a cAMP/PKA-dependent and cAMP-dependent, but PKA-independent, manner. Human granulosa cells were isolated from follicular aspirates of women undergoing assisted conception. Luteinizing human granulosa cells were cultured for up to 3 days in the presence of human (h)LH and the adenylate cyclase activator forskolin in the added presence or absence of increasing doses of the PKA inhibitors H89 (N-[2-(4-bromocinnamylamino)ethyl] 5-isoquinoline) and PKI (myristoylated protein kinase A inhibitor amide 14-22) or the cAMP antagonist, Rp-cAMP. Agonist-stimulated progesterone secretion was inhibited in a dose-dependent manner by the PKA inhibitors and the cAMP antagonist, with decreasing sensitivity as luteinization progressed.
Pretreatment of granulosa cells for 4 h with human (h)LHreduced the effectiveness of H89 in inhibiting progesterone secretion. Under basal conditions, cAMP-GEFI expression increased progressively throughout culture, and this could be further enhanced when cells were incubated with increasing doses of LH and forskolin. Furthermore, incubation of cells in the presence of increasing concentrations of the novel cAMP-GEF-specific cAMP analogue, 8 CPT-2 ME-cAMP (8-(4-chloro-phenylthio)-2 -0-methyladenosine-3 ,5 -cyclic monophosphate), increased progesterone secretion in a dose-dependent manner. The results show that increases in cAMP generated by LH and forskolin, in addition to activating PKA, also induce increases in cAMP-GEFI protein expression in luteinizing human granulosa cells. In addition, activation of cAMP-GEFI results in increased progesterone secretion. Hence, increases in cAMP lead to the activation of PKA-dependent, as well as PKA-independent but cAMPdependent (via cAMP-GEFI), signalling mechanisms. Since cAMP-GEFs have the capacity to activate the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB) signalling pathways, these may provide the potential mechanisms by which cAMP-dependent but PKAindependent progesterone synthesis is regulated.