Bone has a complex hierarchical structure with the capability of self-regeneration. In the case of critical-sized defects, the regeneration capabilities of normal bones are severely impaired, thus causing non-union healing of bones. Therefore, bone tissue engineering has since emerged to solve problems relating to critical-sized bone defects. Amongst the many biomaterials available on the market, calcium silicate-based (CS) cements have garnered huge interest due to their versatility and good bioactivity. In the recent decade, scientists have attempted to modify or functionalize CS cement in order to enhance the bioactivity of CS. Reports have been made that the addition of mesoporous nanoparticles onto scaffolds could enhance the bone regenerative capabilities of scaffolds. For this study, the main objective was to reuse gelatin from fish wastes and use it to combine with bone morphogenetic protein (BMP)-2 and Sr-doped CS scaffolds to create a novel BMP-2-loaded, hydrogel-based mesoporous SrCS scaffold (FGSrB) and to evaluate for its composition and mechanical strength. From this study, it was shown that such a novel scaffold could be fabricated without affecting the structural properties of FGSr. In addition, it was proven that FGSrB could be used for drug delivery to allow stable localized drug release. Such modifications were found to enhance cellular proliferation, thus leading to enhanced secretion of alkaline phosphatase and calcium. The above results showed that such a modification could be used as a potential alternative for future bone tissue engineering research.